자폐스펙트럼장애, 뇌영상 AI로 신속·정확하게 진단서울대병원 김붕년 교수팀, 다중 MRI 정확도 88.8%…개별 MRI보다 10% 높아
【후생신보】 조기 진단이 어려운 자폐스펙트럼장애(ASD)를 MRI 뇌영상 기반 객관·생물학적 지표를 활용해 정확하고 신속하게 진단할 수 있는 근간이 마련됐다. 이로써 기존 행동 관찰식 진단의 한계를 보완할 수 있을 것으로 기대된다.
서울대병원 소아청소년과 김붕년 교수팀(장수민 전임의, 한양대병원 이종민·김인향)팀은 2015년 5월부터 2019년 9월까지 자폐스펙트럼장애 환자 58명과 대조군 48명을 대상으로 MRI 뇌영상 기반 머신러닝 AI알고리즘을 통해 진단 구분능력을 평가하고 연구 결과를 발표했다.
연구 참여자 연령대는 3~6세였으며 자폐군에는 저기능 환자(IQ 70미만)만 포함됐다.
머신러닝 알고리즘은 랜덤포레스트 등 기계학습을 적용해 분류기 형태로 구축됐다. 분류의 매개변수는 ▲T1강조 MRI 영상(대뇌 회백질의 특성을 정량적으로 측정) ▲확산텐서영상(대뇌 백질의 특성을 정량적으로 측정) ▲다중 MRI(T1강조 MRI·확산텐서영상을 조합해 측정)가 사용됐다.
김 교수팀은 매개변수별로 ▲T1강조 MRI 모델 ▲확산텐서영상 모델 ▲다중 MRI 모델로 나누고 머신러닝 AI알고리즘을 통해 자폐군과 대조군으로 진단 구분하는 능력을 각각 평가했다.
평가 결과, 다중 MRI 모델에서 정확도 88.8%, 민감도 93.0%, 특이도 83.8%로 높은 진단 구분 능력을 보여줬다.
특히 다중 MRI 모델의 정확도는 T1강조 MRI(78.0%)와 확산텐서영상(78.7%)을 단독으로 활용했을 때보다 10%p 향상된 것으로 나타냈다.
또한 자폐스펙트럼장애를 진단하는 가장 중요한 영상지표는 후두엽 피질두께, 소뇌각 확산도, 후측 대상회 연결도로 밝혀졌다.
김 교수팀은 영유아 환자를 대상으로 진행했다는 점에서 의미가 크다고 강조했다.
김붕년 교수는 “발달지연이 심한 영유아 자폐스펙트럼장애 환자를 생물학적 지표에 근거해 진단함에 있어 기계학습을 통한 다중 MRI의 활용이 유용하다는 것을 확인할 수 있었다”며 “추가 연구를 통해 다중 MRI에 기능적 뇌영상 데이터를 추가해 보완한다면 자폐 진단의 정확도를 높여줄 것으로 기대된다”고 덧붙였다.
이번 연구는 학술지 ‘자폐 및 발달장애 저널’(Journal of Autism and Developmental Disorders) 최신호에 발표됐다.
한편 자폐스펙트럼장애는 아동 약 1~2%에서 발병하는 신경발달장애로 주로 사회적 관계형성의 어려움, 정서적 상호작용의 문제, 반복적 행동과 제한된 관심 등이 특징이다.
원인은 유전·환경적 요인의 상호작용으로 알려져 있으며 최근에는 사회적 뇌의 구조 및 기능 발달 이상과 관련된다는 보고가 늘고 있다.
그동안 자폐스펙트럼장애 진단은 발달과정에서의 이상 행동이나 표현을 관찰한 후 증상평가를 통해 이루어졌다.
그러나 이 진단법은 전문가 간에 일치도는 높지만 관찰자의 주관이 개입할 여지가 있고 발병원인과 연관성을 파악할 수 없다는 한계가 있어 객관적이고 생물학적 지표를 바탕으로 자폐스펙트럼장애 진단 가능성을 확인하는 연구의 필요성이 대두되어 왔다. <저작권자 ⓒ 후생신보 무단전재 및 재배포 금지>
![]()
서울대병원, 자폐스펙트럼장애, 김붕년 교수, 다중 MRI 관련기사목록
|
많이 본 기사
|